
OpenPiton at 5: A Nexus
for Open and Agile
Hardware Design
Jonathan Balkind, Ting-Jung Chang, Paul
J. Jackson, Georgios Tziantzioulis, Ang Li,
Fei Gao, Alexey Lavrov, Grigory Chirkov,
Jinzheng Tu, Mohammad Shahrad, and
David Wentzlaff
Princeton University

Abstract—For five years, OpenPiton has provided hardware designs, build and verification

scripts, and other infrastructure to enable efficient, detailed research into manycores and

systems-on-chip. It enables open-source hardware development through its open design

and support of a plethora of open simulators and CAD tools. OpenPiton was first designed

to perform cutting-edge computer architecture research at Princeton University and

opening it up to the public has led to thousands of downloads and numerous academic

publications spanningmany subfields within computing. In this article, we share some of

the lessons learned during the development of OpenPiton, provide examples of how

OpenPiton has been used to efficiently test novel research ideas, and discuss how

OpenPiton has evolved due to its open development and feedback from the open-source

community.

& THE OPENPITON PROJECT began over six

years ago, with 2020 representing the fifth

anniversary of its first open-source release

(timeline in Figure 1). Thirteen releases and

thousands of downloads later, we can draw

on our experience to see what worked best,

what needs improvement, and what would

maximize OpenPiton’s utility to the open-

source hardware community. This article is

both an experience report and a progress

update on the status of OpenPiton.

OpenPiton is a framework for designing,

simulating, emulating, and building manycore

Digital Object Identifier 10.1109/MM.2020.2997706

Date of publication 26 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

22
0272-1732 ! 2020 IEEE Published by the IEEE Computer Society IEEE Micro



processors and systems-on-chip (SoCs), like

those shown in Figure 2. OpenPiton provides a

highly configurable and extensible, Linux-capa-

ble, manycore processor design. Users receive

scripts and tools necessary to write their initial

hardware components, test on FPGA, build real

chips, and run applications on their designs. As

a platform for research, OpenPiton has seen

wide adoption in many fields of study within

computing, thanks to its ready-to-use full system

stack, push-button scripting, and support of

both open-source and commercial tools.

Through community outreach, active support,

and regular updates, our team has adapted and

improved OpenPiton to support the growing

needs and interests of the research community.

BEGINNING
OpenPiton started in 2013 as a platform for

building a single chip, Piton. Piton was a vehicle

for several ideas from our research group,

which needed a full-system software–hardware

approach to evaluate their benefits.2 Having

built a general design exemplifying a realistic,

OS-capable, scalable manycore, we saw the

opportunity to make it available to others with

similar research goals. We believe that our inter-

nal need to build a general research platform

supporting a breadth of research ideas was a

key factor leading to OpenPiton’s broad adop-

tion and we maintain this important focus today.

USING OPENPITON
OpenPiton provides a platform for performing

two primary classes of activities: building designs

into artifacts (such as simulation models, FPGA

bitstreams, and silicon chips), and evaluating

artifacts (running code on designs, evaluating the

produced artifacts’ quality). Figure 3 gives an

overview of some uses in each class.

Figure 1. Highlights fromOpenPiton’s first five years.

Figure 2. OpenPiton architecture, adapted.1

Figure 3. Artifact generation and evaluation using

OpenPiton. Coloring of evaluation (right)

corresponds with artifacts that may be used (left).

July/August 2020 23



OPENPITON DESIGN PHILOSOPHY

Lowering the Barrier to Entry and Enabling
Agile Development

Intellectual property (IP) licensing costs are a

significant factor in nonrecurring engineering

(NRE) costs. The growth of active open-source

hardware projects paves the way for IP cost

reductions by providing high-quality, reusable

components. OpenPiton is one of the leading

efforts in constructing such an open-source eco-

system targeting the research community.

Push-button One of the core aspects of the

OpenPiton design philosophy, which developed

over time, has been providing a push-button

experience.

Lessons: As we have built more designs and

users repeatedly asked for assistance, we have

come to focus on making common tasks (both

building and evaluating artifacts) easy to script

around, requiring only a single user-specified

command. For example, an OpenPiton simula-

tion model can be compiled with one of six sup-

ported simulators using a single command.

Likewise, a single invocation of our protosyn
FPGA synthesis flow can produce an FPGA bit-

stream of a user-parameterized design for one of

many common Xilinx FPGA development boards

or Amazon’s EC2 F1 cloud FPGA platform. To

evaluate the design, groups of hundreds or thou-

sands of assembly and C tests (or a prebuilt OS

image) can then be run on the simulation or

FPGA model with a single command.

When used for ASIC creation, our flow ena-

bles running all of the steps of synthesis, place-

ment, and routing to generate a final ready-for-

manufacture netlist with a single command.

Each step can also be run independently and

have its results checked, and the steps can be

submitted to a job scheduler (SLURM) to run in

parallel. This significantly reduces the barrier to

entry for new users that can quickly familiarize

themselves with the infrastructure, and the dif-

ferent steps of the build and verification process.

Supported Tools and Ease of Porting To

support users with different environments and

constraints, we have worked to provide exten-

sive choices of simulators and CAD tools. For

hardware simulation, we started only with Syn-

opsys VCS.

Lessons: As users adopted OpenPiton, we

learned that they had different resources avail-

able and had to broaden our simulator support.

Accordingly, we added Cadence NCSim, Mentor

Questa/ModelSim, and open-source simulators

Icarus Verilog and Verilator. With its cross-plat-

form codebase, OpenPiton has become an

attractive test case for EDA developers, which

led to Riviera-PRO’s developers contributing

support. For ASIC, we extended our commercial

tool flow to support open-source EDA tools,

such as Yosys, OpenSTA, and OpenTimer. Sup-

porting these open-source tools lowers the bar-

rier of entry for at-scale, real-system manycore

research.

OpenPiton’s original synthesis and backend

physical design scripts were based on IBM’s

32-nm silicon-on-insulator (SOI) process, as used

for the Piton ASIC. As we moved to support our

and others’ use of different commercial or open-

source processes, we realized that we needed a

flow that would support such a change.

Lessons: The philosophy that emerged is to

enable agile porting across different technology

nodes. To achieve this, we separated the scripts

into two different groups, design-specific and

process-specific, so that users can quickly iden-

tify and adapt to their desired process technol-

ogy. With this change, we support many new

process design kits, including the GLOBALFOUN-

DRIES 12-nm Fin field-effect transistor (FinFET)

process, Synopsys 32/28 nm educational pro-

cess, open-source FreePDK45, and FreePDK15.

Our users have adopted a variety of other

processes.

We similarly support easy porting to new

Xilinx FPGAs. OpenPiton designs have run on

more than ten different Xilinx boards. To target

a new FPGA, the user only needs to create a

handful of new files and part-specific IP

configurations.

Open-Source Support and Collaboration
In developing OpenPiton, we have leveraged

a variety of open IP to improve the platform and

reduce design effort (and thus NRE). We have

also had the privilege to work with other devel-

opers and researchers to create new designs

Agile and Open-Source Hardware

24 IEEE Micro



and prototypes, which integrate open tools and

IP with OpenPiton.

OpenPiton+Ariane OpenPiton+Ariane is the

world’s first open-source, SMP Linux-booting

RISC-V manycore. The platform is the fruit of our

collaboration with ETH Z€urich’s PULP team,

where we integrated the Ariane RISC-V core into

OpenPiton.1

PyOCN Network Replacement PyOCN3 is

an effort to provide “a unified framework that

vertically integrates multiple research methodol-

ogies to enable productively exploring the on-

chip network design space.” The PyOCN devel-

opers replaced OpenPiton’s network-on-chip

with PyOCN-generated crossbars and meshes,

with the goal of a completely configurable NoC

topology in OpenPiton. This will enable research

into optimized network topologies for full-stack

systems.

EDA Though OpenPiton first targeted the Com-

puter Architecture community, it has provided

much utility to the EDA community. Its modular-

ized, scalable, configurable, and heterogeneous

nature make it an excellent source of design

benchmarks for CAD tool development. Addi-

tionally, OpenPiton’s synthesis and backend

scripts straightforwardly generate properly for-

matted input files.

We have worked closely with many open-

source CAD tool developers. On one hand, Open-

Piton provides a rich set of designs for develop-

ers stress-testing their tools. For example, a

number of OpenPiton’s modules were used to

demonstrate LSOracle, an automated mixed

logic synthesis framework.4 On the other hand,

we have integrated open tools, such as Yosys,

OpenTimer,5 Icarus Verilog, and OpenROAD6

into our originally commercial tool-based ASIC

flow. The purely open-source flow based on

open-cell libraries further extends the usability

of the framework.

Verification Verification researchers have also

adopted OpenPiton as a benchmark. For exam-

ple, the L1.5 cache has been used as a driving

example for instruction level abstraction (ILA)7

based verification, a formal abstraction for pro-

cessors and accelerators.

FuseSoC To move toward a more structured

dependence description format, we are replac-

ing industry standard file lists (flists) with the

FuseSoC CAPI description format. Moving away

from flists enables us to move to a more modular

and configurable framework. The CAPI descrip-

tion format clearly describes the dependencies

between different modules and naturally creates

a design hierarchy, which assists the overall

development effort when importing external IP

and exporting our IP as usable IP for others. To

tackle the new challenges, we closely collabo-

rated with the FuseSoC developers, suggesting

features, reporting bugs, and contributing sup-

port for tools such as VCS.

Peripherals Peripherals are critical to users

interested in system-level and especially full-OS

functionality. The closed/proprietary periph-

erals, we started with restricted us in a variety of

ways. Moving to open alternatives for SD/SDHC/

SDXC, DDR, and VGA controllers (among others)

brought higher quality, maintainability, and

modifiability.

Industry We work with a number of industrial

partners on their use and enhancement of Open-

Piton. The platform has proved particularly valu-

able for EDA tool development and validation.

Our partners have tested manycore design scal-

ability to as many as 2500 OpenSPARC T1 cores

and have run emulations of 128 or more Ariane

cores. With some EDA users routinely running

OpenPiton designs through their tools, our aca-

demic and industrial users alike can use OpenPi-

ton with confidence that the code is well

validated and works with their tools of choice.

With the addition of new heterogeneous ele-

ments into OpenPiton, our EDA partners can tar-

get the design without concern for generality, as

it is becoming very reflective of a modern, indus-

trial-grade SoC.

Forward Thinking and Compatibility
In developing OpenPiton, we have come to

learn that it is crucial to build a system, which

balances efficiency with configurability and

July/August 2020 25



extensibility. Today we aim to be forward think-

ing and design for forward compatibility.

P-Mesh Packet Format Our original NoC

packet format was dense and provided little

room for growth. As the design became more

complex, this brittle approach limited not just

our flexibility but also our creativity.

Lessons: By changing to provide copious

extra encoding space in the packet format, it

became easy to extend the design without modi-

fications becoming intrusive. We have seen new

message types added to the coherence protocol,

larger packets used for bulk data transfers, more

dimensions added to the network, and existing

fields repurposed for new uses, all without inter-

ference with the system’s regular operation. The

only cost for this research flexibility was a one-

to-two flit overhead on messages, which are

often ten or more flits long.

Configuration Registers Researchers need

software-controlled mechanisms to measure and

configure their new research components. As

with the NoC packet format, we learned to pro-

vide flexible configuration registers. We use

these registers to enable, disable, and configure

features and to read performance counters. The

registers are integrated with the memory system

(accessible through reserved physical

addresses) where they can be easily extended

and are placed behind cores’ memory manage-

ment units for protection.

Convenience and Productivity Improvements

Between our uses of OpenPiton for research

and those of our users, we prioritize quality of

life improvements to save research time.

Lessons: We noticed that if we had to com-

plete a menial task in pursuit of a research goal,

our users would often ask about those same

tasks. To this end, we have made a variety of

productivity-enhancing changes.

For example, we originally saw Debian boot

take around 45 min with the OpenSPARC T1

core. Changes like improving frequency on FPGA

and moving to a full 4-wire SDHC boot medium

brought this down to less than 5 min.

Educational Use

OpenPiton has been used as a project plat-

form in both undergraduate- and graduate-level

computer architecture courses at Princeton

University. It provides a great opportunity for

the students to work on a large-scale, industry-

standard, silicon-proven manycore framework.

In 4–6 week course projects, students have

implemented different architectural designs and

verified research ideas through RTL simulation

and FPGA emulation. Impressive student proj-

ects have been developed, including hardware

transactional memory systems, comparing and

evaluating different cache replacement policies,

implementing different network topologies, and

the development of our (now default) highly

parameterized chipset crossbar generator.

MANAGING AND MAINTAINING AN
OPEN INFRASTRUCTURE

Community Building and Platforms
Though much of OpenPiton’s infrastructure

was created to aid our own research, one of our

primary goals in releasing OpenPiton is enabling

others to easily and efficiently perform comput-

ing research. We used multiple methods to grow

and maintain an active research community

around the OpenPiton infrastructure.

Building the Community Our primary tactic

in building a community has been lowering the

barrier to entry of using OpenPiton. Though

early OpenPiton releases contained thorough

documentation including user guides and archi-

tectural specifications, this documentation alone

was not very effective at helping users get to

work. We noted that we repeatedly referred to

the same portions of our documentation when

helping new users.

Lessons: Targeting the community’s most

common pain points, we improved our docu-

mentation and created a getting-started guide to

make it easier for researchers to join our com-

munity. We also created virtual machine and

Docker container environments preinstalled

with open tools to run OpenPiton simulations.

We have also run 13 tutorials on OpenPiton at

major conferences and universities across the

world. This invaluable opportunity enabled us to

Agile and Open-Source Hardware

26 IEEE Micro



directly help researchers join our community

while also letting us learn more about how users

are interested in using OpenPiton. However,

users who could not attend also showed interest

in accessing our learning materials.

Lessons:Wemade available slides and a video

recording of the tutorials online to ensure every-

one has access to this useful information, not

just those who were able to travel to one of our

tutorials.

Maintaining the Community Early on in

OpenPiton’s lifetime, providing direct, personal-

ized support to our users ensured that a new

user would remain an active user.

Lessons: The OpenPiton Google group came

to provide a forum for personalized support for

each community member while also creating an

archive of common problems and their solu-

tions. Having public communication showed

that the community itself was being actively sup-

ported, not just the codebase.

We used user feedback to improve OpenPiton

then broadcast those changes through our mail-

ing list.

Lessons: Providing regular updates highlight-

ing requested features emphasized the active

nature of our development and provided exam-

ples of positive change caused by community

participation.

Community Contributions

Throughout the development of OpenPiton,

we have been delighted to receive a variety of

crucial community contributions. Significant

among such contributions were frequency

improvements for our FPGA implementation,

bug fixes to eliminate data corruption in our

original SD controller, documentation improve-

ments, simulator support, FPGA flow improve-

ments, RTL portability improvements, and code

modernization. Several of these enhancements

were not on our roadmap at all but provided

value to us and a large number of our users. In

the case of the SD data corruption, we were

aware that there was a bug (but not the details)

at the time we were transitioning to the newer

SDHC controller and the fix helpfully illuminated

a similar bug to us in the new controller.

CLOSING THE LOOP
OpenPiton is great for system-on-chip (SoC)

research in multiple domains, from applications

to architecture to design automation. The frame-

work enables users to expediently design, syn-

thesize, test for bugs, check for timing

violations, evaluate for area overhead, and pro-

totype on FPGAs. Even better, OpenPiton offers

the software support for SMP Linux-booting

manycores, which opens up more exciting

research opportunities. With OpenPiton as an

explicitly modularized, ready-to-modify, and

coherent framework, developing and proving

research ideas is less ad hoc and time-consum-

ing. Therefore, OpenPiton is the ideal starting

point for prototyping new ideas and enables

closing the development and validation loop of

many research projects. The coherent frame-

work enables the easy exploration of an idea at

different levels of hierarchy, which reveals latent

problems and enhances implementations’ com-

pleteness. Following are some example pieces of

research that have been enabled.

Execution Drafting
Execution Drafting (ExecD) is an energy-sav-

ing microarchitectural mechanism for multi-

threaded processors, which exploits duplicate

computation.8 The evaluation of ExecD started

with a custom-built, trace-based simulator. Uti-

lizing OpenPiton, ExecD was then implemented

in RTL by modifying the OpenSPARC T1 core,

and was synthesized to estimate the area over-

head. Implementing ExecD in OpenPiton

revealed several tricky implementation details

that were abstracted away in simulation. The

modified core was later taped out in Piton and

the energy behavior was characterized in the

real silicon. Notably, a hardware bug in Piton’s

ExecD implementation was found due to a mis-

match between energy results from simulation

and characterization. Going back to RTL simula-

tion, it was then possible to feed the Piton

characterization data into a bug-fixed implemen-

tation, which achieved better-than-estimated

energy efficiency. Running ExecD on real

hardware requires the kernel to decide when

to enable the ExecD hardware. Notably,

with OpenPiton’s full-stack platform, kernel

patches for real ExecD silicon was developed as

July/August 2020 27



part of a single semester undergraduate OS

research project.

MITTS and PiCL
Other projects, which closed the research

loop with OpenPiton, include MITTS9 and PiCL.10

Both started out with high-level simulations,

which needed further validation in the form of

RTL implementation. Using OpenPiton as a plat-

form, they were each integrated into the P-Mesh

cache coherence system and then evaluated in

either the Piton ASIC (for MITTS) or FPGA (for

PiCL), where the final results could be compared

back to the original first-order simulations. Both

projects required low-level software support,

which was best evaluated in a full-system stack

like that provided by OpenPiton.

Piton Chip Characterization
The Piton ASIC prototype was taped-out on

IBM’s 32-nm SOI process and has been carefully

studied for a detailed power and energy charac-

terization.2 The Piton chip is a 25-core instan-

tiation of OpenPiton’s scalable manycore

architecture. At a basic level, the characteriza-

tion results provide useful data about manycore

processors taped out in advanced technology

processes. More interestingly, researchers can

use the combination of our open-source RTL,

tool flow, and characterization results to

develop and improve their own models. The

data we provided back to the community are

beginning to improve area, performance, power,

and energy models and simulations of modern

parallel processors.

EVOLUTION OF OPENPITON AND
ONGOING IMPROVEMENTS

Open Development

For the first few years of OpenPiton, we only

provided our releases as tarballs downloadable

at openpiton.org. This gave us the opportunity

before release to vet and remove code that may

contain sensitive elements. However, tarballs

have downsides and are unproductive for users

moving to newer releases. Users asked us to take

a more convenient and transparent approach to

development.

Lessons: In 2018, we brought OpenPiton to

GitHub (https://github.com/PrincetonUniversity/

openpiton) and moved to a more open develop-

ment model. We wrote a new Git history for the

project reflecting the external releases and now

use Git to straightforwardly release features while

maintaining their history. Entire new features like

OpenPiton+Ariane were built in the open, making

their entire development history public. With this

new approach, external contributors can easily

submit pull requests (PRs) for bugfixes and new

features. Furthermore, the Git history acts as a

guide for integrating new features into OpenPiton.

Going forward, we plan to develop asmuch in pub-

lic as we can. This open development has led us to

adopt new strategies for modularizing and fire-

walling sensitive IP so that we can release without

having tomanually vet the code.

PyHP
PyHP has served as a powerful tool in devel-

oping OpenPiton. Embedding arbitrary Python

for Verilog generation enabled us to straight-

forwardly and productively parameterize the

P-Mesh cache system. Our highly parameteriz-

able P-Mesh chipset crossbars utilize PyHP to

parse the XML design configuration and generate

RTL at design time. This power is crucial in

building realistic, large-scale designs.

Lesson: As we have added heterogeneity, we

have reached a tradeoff point. There are chal-

lenges in generating multiple heterogeneous

instances of components while enabling synthe-

sis and simulation tools to intelligently dedupli-

cate identical subcomponents. From here, one

might extend their generators to look more like

higher-level hardware description languages. To

avoid this complexity, we make more use of Ver-

ilog’s native generate for heterogeneous features

like heterogeneous tile instantiations.

Heterogeneity
RISC-V and Heterogeneous ISA From

OpenPiton’s inception, we have focused on pro-

viding a high quality, scalable, cache coherent

memory system. We have long said that we are

not attached to the OpenSPARC T1 core’s SPARC

V9 ISA. However, we had not demonstrated P-

Mesh’s generality until recently.

Agile and Open-Source Hardware

28 IEEE Micro



With RISC-V’s emerging importance to the

research community, we wanted to live up to

our claim. In 2017, we began to develop what we

now call the transaction-response interface

(TRI) and the “bring your own core” (BYOC) plat-

form.1 TRI is a flexible and low overhead inter-

face to connect new cores to OpenPiton, and it

is uniquely designed to enable the coexistence

of a variety of cores, regardless of ISA. BYOC pro-

vides a level of heterogeneity that enables new

research into cache-coherent, heterogeneous-

ISA systems not just at the architecture level,

but throughout the software stack.

To date, ten cores of four different ISAs (plus

the QEMU full-system emulator) have been con-

nected to BYOC. All cores share a common plat-

form in terms of the peripherals

and coherent memory operations

available. Additionally, they all

benefit from OpenPiton’s thorough

validation. When bringing up Linux

on OpenPiton+Ariane, we went

from single-core to dual-core boot

in just one day, with no RTL modifi-

cations necessary. This was a

startling level of productivity, par-

ticularly given the microarchitec-

tural and ISA differences between

the OpenSPARC T1 and Ariane

cores.

Accelerators To better enable

research into heterogeneous SoCs,

we have integrated several acceler-

ators. The first, MIAOW,11 is an

open-source GPGPU, which imple-

ments AMD’s Southern Islands ISA.

For AI/ML inference, students in

Princeton’s Advanced Computer Architecture

class connected Nvidia’s deep learning accelera-

tor (NVDLA). MIAOW and NVDLA were con-

nected to the P-Mesh chipset crossbars and can

be programmed from Linux running on the host

core, making accelerator research easy.

Coherence Modifying the cache coherence

system to support different coherence models is

an open research question, which requires a

careful and principled approach. Designing the

coherence protocol (in our case, P-Mesh) to be

flexible and extensible is critical in enabling

users’ adaptations.

Our principled coherence protocol enabled

us to formally model the original P-Mesh proto-

col in the Murphi modeling language and verified

that it will operate deadlock-free. This gives us

confidence in the foundations on which we are

implementing our modifications and extensions.

From our experience so far, extensions like

coherent/noncoherent direct memory access

(DMA) and software-controlled cache coherence

can be implemented in P-Mesh with the addition

of just one or two new message types and the

creative reuse of existing operations. The modi-

fied protocol can use the existing three NoCs

while remaining deadlock-free.

NEXT 5 YEARS
OpenPiton has grown from its

inception as an architectural

research platform for scalable

manycores to a powerful tool and

valuable resource enabling agile

research into many layers of the

computing stack. Over the next

few years, it will evolve to sup-

port the study of new and inter-

esting research areas including

heterogeneous computing, accel-

erators, open-source EDA, and

other areas of interest within the

diverse OpenPiton user commu-

nity. This evolution will include

the tapeout of a number of excit-

ing new prototype chips. Mean-

while, we will use our open and

agile design philosophy to ensure

that OpenPiton remains an easy-

to-use, efficient, and powerful tool for computing

research.

ACKNOWLEDGMENTS
This work was supported in part by the

National Science Foundation under Grant CNS-

1823222 and Grant CCF-1453112; and in part by

the Air Force Research Laboratory (AFRL) and

Defense Advanced Research Projects Agency

(DARPA) under Agreement FA8650-18-2-7846,

Agreement FA8650-18-2-7852, and Agreement

OpenPiton has grown

from its inception as an

architectural research

platform for scalable

manycores to a power-

ful tool and valuable

resource enabling agile

research into many

layers of the computing

stack. Over the next

few years, it will evolve

to support the study of

new and interesting

research areas includ-

ing heterogeneous

computing, accelera-

tors, open-source EDA,

and other areas of

interest within the

diverse OpenPiton

user community.

July/August 2020 29



FA8650-18-2-7862. The U.S. Government is autho-

rized to reproduce and distribute reprints for

Governmental purposes notwithstanding any

copyright notation thereon. The views and conclu-

sions contained herein are those of the authors

and should not be interpreted as necessarily repre-

senting the official policies or endorsements,

either expressed or implied, of Air Force Research

Laboratory (AFRL) and Defense Advanced

Research Projects Agency (DARPA), NSF, or the

U.S. Government. The authors would like to thank

all contributors to OpenPiton for making the plat-

formwhat it is today.

& REFERENCES

1. J. Balkind et al., “BYOC: A “Bring your own core”

framework for heterogeneous-ISA research,” in Proc.

25th Int. Conf. Archit. Support Program. Lang.

Operating Syst., Mar. 2020, pp. 699–714.

2. M. McKeown et al., “Power and energy

characterization of an open source 25-core manycore

processor,” in Proc. IEEE Int. Symp. High Perform.

Comput. Archit., 2018, pp. 762–775.

3. C. Tan et al., “PyOCN: A unified framework for

modeling, testing, and evaluating on-chip networks,”

in Proc. IEEE 37th Int. Conf. Comput. Des., 2019,

pp. 437–445.

4. W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang,

and P.-E. Gaillardon, “LSOracle: A logic synthesis

framework driven by artificial intelligence,” in Proc.

IEEE/ACM Int. Conf. Comput.-Aided Des., 2019,

pp. 1–6.

5. T.-W. Huang and M. D. Wong, “OpenTimer: A high-

performance timing analysis tool,” in Proc. IEEE/ACM

Int. Conf. Comput.-Aided Des., 2015, pp. 895–902.

6. T. Ajayi et al., “OpenROAD: Toward a self-driving,

open-source digital layout implementation tool chain,”

in Proc. ACM/EDAC/IEEE Des. Autom. Conf., 2019,

pp. 76:1–76:4.

7. B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel,

A. Gupta, and S. Malik, “Instruction-level abstraction

(ILA): A uniform specification for system-on-chip (SoC)

verification,” ACM Trans. Des. Autom. Electron. Syst.,

vol. 24, no. 1, 2018, Art. no. 10.

8. M. McKeown, J. Balkind, and D. Wentzlaff, “Execution

drafting: Energy efficiency through computation

deduplication,” in Proc. 47th Annu. IEEE/ACM Int.

Symp. Microarchit., 2014, pp. 432–444.

9. Y. Zhou and D. Wentzlaff, “MITTS: Memory inter-

arrival time traffic shaping,” in Proc. ACM/IEEE

43rd Annu. Int. Symp. Comput. Archit., 2016,

pp. 532–544.

10. T. Nguyen and D. Wentzlaff, “PiCL: A software-

transparent, persistent cache log for nonvolatile main

memory,” in Proc. 51st Annu. IEEE/ACM Int. Symp.

Microarchit., 2018, pp. 507–519.

11. R. Balasubramanian et al., “Enabling GPGPU low-

level hardware explorations with MIAOW: An open-

source RTL implementation of a GPGPU,” ACM

Trans. Archit. Code Optim., vol. 12, no. 2, Jun.

2015, Art. no. 21.

Jonathan Balkind is currently working toward the

Ph.D. degree with the Department of Computer Sci-

ence, Princeton University. His research interests

include computer systems, programming languages,

and computer architecture with the aim of improving

the efficiency of modern multicore systems in mobile

and datacenter environments. Balkind received the

M.Sci. degree in computing science from the Univer-

sity of Glasgow and the M.A. degree in computer sci-

ence from Princeton University. Contact him at

jbalkind@princeton.edu.

Ting-Jung Chang is currently working toward the

Ph.D. degree with the Department of Electrical Engi-

neering, Princeton University. Her research interests

include computer architecture, memory systems, and

emerging transistor technologies. Chang received the

M.A. degree in electrical engineering from Princeton

University. Contact her at tingjung@princeton.edu.

Paul J. Jackson is currently working toward the

Ph.D. degree with the Department of Electrical Engi-

neering, Princeton University. His research interests

include parallel computer architecture, energy effi-

ciency, and serial computation. Jackson received the

M.A. degree in electrical engineering from Princeton

University. Contact him at pjj@princeton.edu.

Georgios Tziantzioulis is currently a Postdoctoral

Research Associate with the Department of Electrical

Engineering, Princeton University. His current research

focus is on the design of power and energy efficient

computer systems for data-centers and Cloud Serv-

ices. Tziantzioulis received the Ph.D. degree in com-

puter engineering from Northwestern University and

the Diploma degree in computer and communication

engineering from the University of Thessaly. Contact

him at georgios.tziantzioulis@princeton.edu.

Agile and Open-Source Hardware

30 IEEE Micro



Ang Li is currently working toward the Ph.D. degree

with the Department of Electrical Engineering,

Princeton University. His research interests include

heterogeneous computer architecture, reconfigura-

ble computing, and system/software design for gen-

eral-purpose reconfigurable fabrics. Li received the

M.A. degree in electrical engineering from Princeton

University. Contact him at angl@princeton.edu.

Fei Gao is currently working toward the Ph.D.

degree with the Department of Electrical Engineer-

ing, Princeton University. His research interests

include in-memory compute, memory systems, and

manycore processor design. Gao received the M.A.

degree in electrical engineering from Princeton

University. Contact him at feig@princeton.edu.

AlexeyLavrov is currently working toward the Ph.D.

degree with the Department of Electrical Engineering,

Princeton University. His research interests include

multitenant I/O devices, multicore processor design,

and hardware support for networking. Lavrov received

the M.A. degree in electrical engineering from Prince-

ton University and the M.A. degree in applied physics

and math from the Moscow Institute of Physics and

Technology. Contact him at alavrov@princeton.edu.

Grigory Chirkov is currently working toward the

Ph.D. degree with the Department of Electrical Engi-

neering, Princeton University. His research focuses

on manycore processors and coherence protocols.

Chirkov received the B.S. degree in applied physics

and math from the Moscow Institute of Physics and

Technology. Contact him at gchirkov@princeton.edu.

Jinzheng Tu is currently working toward the Ph.D.

degree with the Department of Electrical Engineer-

ing, Princeton University. Her research focuses on

future computation and communication beyond the

end of Moore’s Law. Tu received the B.S. degree in

electrical engineering from Tsinghua University.

Contact her at jinzheng@princeton.edu.

Mohammad Shahrad is currently working toward

the Ph.D. degree with the Department of Electrical

Engineering, Princeton University. His research

aims to improve the efficiency of public cloud sys-

tems through better resource management and

enhanced vertical integration. Shahrad received

the bachelor’s degree in electrical engineering

from Sharif University of Technology. Contact him

at mshahrad@princeton.edu.

David Wentzlaff is currently an Associate Profes-

sor with the Electrical Engineering Department,

Princeton University. His research interests include

parallel computer architecture, architectures for

cloud computing, and biodegradable computing

systems. He has received the NSF CAREER award,

the DARPA Young Faculty Award, the AFOSR

Young Investigator Prize, and the Princeton

E. Lawrence Keyes Faculty Advancement Award.

Wentzlaff received the master’s and Ph.D. degrees

in electrical engineering and computer science

from the Massachusetts Institute of Technology.

Contact him at wentzlaf@princeton.edu.

July/August 2020 31


