
Automated Design of FPGAs Facilitated by
Cycle-Free Routing

Ang Li
Dept. of Electrical Engineering

Princeton University
Princeton, NJ, USA

angl (at) princeton (dot) edu

Ting-Jung Chang
Dept. of Electrical Engineering

Princeton University
Princeton, NJ, USA

tingjung (at) princeton (dot) edu

David Wentzlaff
Dept. of Electrical Engineering

Princeton University
Princeton, NJ, USA

wentzlaf (at) princeton (dot) edu

Abstract—As device technology advances into the sub-10nm
era, the design costs of Field Programmable Gate Arrays (FPGAs)
built out of fully-custom, hand-layout blocks have increased
dramatically. At the same time, Embedded FPGAs (eFPGAs)
are picking up steam in heterogeneous system-on-chip designs,
in which case supporting customizable FPGA architectures and
reducing design costs are more crucial than squeezing the last
bit of performance out of the transistors.

To reduce the cost and complexity of FPGA designs, prior
works have proposed to build FPGAs using Electronic Design
Automation (EDA) tools and standard-cell libraries. Though
functionally viable, this approach faces two challenges: 1) An
accurate timing model is crucial for FPGA implementation tools
to produce correct and optimal results. However, post-layout
Static Timing Analysis (STA) with EDA tools is error-prone
on FPGAs, because the typical FPGA routing graphs contain
many cycles at design time. 2) Conventional FPGA design relies
heavily on iterative/empirical improvements to achieve optimal
floorplanning and time-budgeting. Without such insights, blocks
may be shaped and constrained sub-optimally.

This work addresses the first challenge by proposing an
algorithm to derive cycle-free sub-graphs. A cycle-free sub-
graph is achieved by logically ranking the routing tracks and
selectively removing some switch block connections. Each sub-
graph enables accurate, per-switch, post-layout STA, and the
union of multiple sub-graphs covers all the timing arcs of
the FPGA. Furthermore, our proposed approach addresses
the second challenge by enabling the creation of intrinsically
cycle-free FPGAs that facilitate a flat multi-block or full-chip
design flow. By blending the blocks, the EDA tools can exploit
more optimization opportunities and automatically adapt to
heterogeneous blocks. Our experiments show that the routability
of cycle-free routing graphs is comparable to conventional FPGA
routing graphs, and the Quality of Results (QoR) of the FPGA
layout is superior to the result of previous approaches.

Index Terms—FPGA, FPGA Routing Architecture, EDA Flow

This material is based on research sponsored by the NSF
under Grant No. CCF-1453112, Air Force Research Lab-
oratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement No. FA8650-18-2-7852.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of Air
Force Research Laboratory (AFRL) and Defense Advanced
Research Projects Agency (DARPA), the NSF, or the U.S.
Government.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have scaled in
logic capacity and performance over the past few decades.

Fig. 1: FPGA Architecture. CLB: Configurable Logic Blocks
containing Look-Up Tables and registers; CB: Connection
Blocks containing programmable switches connecting CLB
pins and routing tracks; SB: Switch Blocks containing pro-
grammable switches connecting routing tracks.

This scaling has been enabled by using regular architectures
built out of small repeating blocks, as shown in Fig. 1. To
optimize Performance, Power, and Area (PPA), these blocks
are typically designed and optimized extensively by hand.
Unfortunately, this key design aspect has become more of a
challenge than a blessing as device technology has advanced
into the sub-10nm era [1]. Conventional FPGA design costs,
including floorplan elaboration, cell customization, and cus-
tom timing/power analysis, have increased dramatically as
process design rules and fabrication limitations have evolved.

At the same time, embedded FPGAs (eFPGAs) have
emerged as a promising component in heterogeneous System-
on-Chips (SoCs), providing high performance and versatility
for a broad spectrum of applications [2]–[5]. However, the
conventional approach to designing FPGAs is costly when ex-
ploring novel FPGA architectures, integrating new hardwired
blocks, or migrating between device technologies. Moreover,
the lack of synergy between the design flows of FPGAs and
other types of cores poses a challenge to chip-level timing
closure and verification.

Addressing these issues, prior works [6]–[9] have proposed
to build FPGAs using EDA tools and standard-cell libraries.
Fig. 2a and 2b compare the conventional design flow and the
EDA flow. At the cost of some PPA degradation, this design
flow can be easily adapted to various FPGA architectures
across different device technologies. When augmented with
just a narrow selection of hand-optimized switches and con-
figuration cells, the gap between FPGAs built this way and
commercial FPGAs can be narrowed down to 60% overhead
in area and 30% overhead in average switch delay [8], [10].

Architecture Design &
Floorplanning

Chip-level Place &
Route by Hand

A1

Custom Parasitics &
Timing Extraction

A2

A3

A4

Architecture Design &
Floorplanning B1

B2

Top-level Place &
Route by EDA tools B3

Inaccurate Timing
Analysis B4

Architecture Design C1

Logic Blocks
Laid out by EDA tools C2

Multi-level Place &
Route by EDA tools C3

Accurate Timing
Analysis by EDA tools C4

A) Conventional/Commercial
FPGA Design

B) Prior Works on
Synthesizable FPGA

C) Proposed Cycle-Free
Synthesizable FPGA

+ High density & performance
- High design cost
- Not portable across
 device technologies

- Low density & performance
- Inaccurate timing analysis

* Moderate density & performance
+ Automated, accurate,
 Per-switch timing analysis

Fully-customized Logic
& Routing Blocks

Logic & Routing Blocks
Laid out by EDA tools

(a) Conventional
+ Optimal PPA
– High design cost
– Custom STA

Architecture Design C1

Automated Layout of
Logic Blocks C2

Automated Chip-level
Place & Route C3

Automated, Accurate
Timing Analysis C4

A) Conventional/Commercial
FPGA Design

B) Prior Works on
Synthesizable FPGA

C) Proposed Cycle-Free
Synthesizable FPGA

+ High density & performance
- High design cost
- Not portable across
 device technologies

- Low density & performance
- Inaccurate timing analysis

* Moderate density & performance
+ Automated, accurate,
 Per-switch timing analysis

Architecture Design &
Floorplanning

Chip-level Place &
Route by Hand

A1

Custom Parasitics &
Timing Extraction

A2

A3

A4

Fully-customized Logic
& Routing Blocks

Architecture Design &
Floorplanning B1

B2

Chip-level Place by Hand
Automated Route B3

Inaccurate Timing
Analysis B4

Automated Layout of
Logic & Routing Blocks

(b) Prior Works
– Poor PPA
• Moderate cost
– Inaccurate STA

Architecture Design C1

Automated Layout of
Logic Blocks C2

Automated Chip-level
Place & Route C3

Automated, Accurate
Timing Analysis C4

A) Conventional/Commercial
FPGA Design

B) Prior Works on
Synthesizable FPGA

C) Proposed Cycle-Free
Synthesizable FPGA

+ High density & performance
- High design cost
- Not portable across
 device technologies

- Low density & performance
- Inaccurate timing analysis

* Moderate density & performance
+ Automated, accurate,
 Per-switch timing analysis

Architecture Design &
Floorplanning

Chip-level Place &
Route by Hand

A1

Custom Parasitics &
Timing Extraction

A2

A3

A4

Fully-customized Logic
& Routing Blocks

Architecture Design &
Floorplanning B1

B2

Chip-level Place by Hand
Automated Route B3

Inaccurate Timing
Analysis B4

Automated Layout of
Logic & Routing Blocks

(c) This Work
• Moderate PPA
+ Low design cost
+ Accurate STA

Fig. 2: Comparison between FPGA design flows

1

CLB CLB

SB SB SB

SBSBSB

Fig. 3: Two example cycles (highlighted with colored lines) in
an FPGA using the Wilton switch block. For clarity, blocks
are not to-scale, and irrelevant connections are omitted. 1©
shows a long track (L = 2) which runs through the switch
block in the middle.

Besides PPA degradation, the design flows proposed by
prior works face another challenge: post-layout Static Timing
Analysis (STA). An accurate and complete timing model
is crucial for FPGA implementation tools to produce the
correct and optimal results. However, the routing resources
of FPGAs, namely the routing tracks and the programmable
switches, are a rats nest of cycles, i.e., combinational loops, as
shown in Fig. 3. A valid bitstream eliminates these cycles by
fixing each switch to one specific configuration. At design
time, nonetheless, the automated STA tools must measure
all possible configurations. Unfortunately, these tools cannot
calculate the propagation delay of point-to-point links when
cycles are present in the circuit. They have no choice but to
cut timing paths at random until a cycle-free timing graph is
derived. This random cutting causes potentially critical paths
to be lost, and produces inaccurate or even incorrect results.

In this paper, we propose an algorithm for designing cycle-
free FPGA routing graphs. These routing graphs can be
very similar to conventional/commercial routing architectures
or can be novel routing architectures. Our proposed algorithm
leverages the insight that while typical FPGA routing graphs
appear to contain copious cycles, the regularity in the switch
blocks like the Wilton switch block [11] actually brings them
very close to being cycle-free with the removal/rearranging of
a few key connections. This work takes inspiration from the
computer architecture Network on Chip (NoC) community,
in particular the turn model [12], an analytic framework
for designing deadlock-free wormhole routing algorithms for
NoCs. Our algorithm ranks the FPGA routing tracks logically,
then constrains the routing graph so that connections are valid
only if the output track is ranked higher than or equal to the

input track while respecting the turn model.
This technique addresses the STA challenge by providing

a systematic approach to identifying the minimally needed
number of cycle-breaking connections. Disabling the timing
paths corresponding to these connections enables automated,
accurate, per-switch STA. Moreover, this technique facilitates
the creation of intrinsically cycle-free FPGAs, which enables
a flat multi-block or full-chip design flow, as shown in Fig. 2c.
This flat design flow shifts the burden of floorplanning and
constraining the blocks from FPGA designers to the EDA
tools and opens up more optimization opportunities.

Our work makes the following contributions:

1) Proposes an algorithm to construct cycle-free FPGA
routing graphs, either derived from conventional, exist-
ing FPGAs, or being a novel routing graph design.

2) Quantitative evaluation of the routability of cycle-free
FPGA architectures with VTR [13].

3) Quantitative evaluation of the flat multi-block design
flow enabled by cycle-free FPGA architectures.

II. RELATED WORK

For the past few decades, commercial FPGAs have em-
ployed a fully-custom design flow to achieve optimal PPA.
However, as device technology advances into the sub-10nm
era, the complexity of manual design and custom verification
has rendered this flow less cost-effective [1]. Addressing this
issue, prior works have proposed various design automation
approaches [6]–[10], [14], [15].

Neumann et al. [14] proposed to design FPGAs using
automated layout generators, which are impractical for state-
of-the-art technology nodes. A more technology-agnostic
approach is to generate RTL netlists and then use EDA tools.
Aken’Ova et al. [10] proposed to build eFPGAs out of syn-
thesizable netlists with extensive physical-level floorplanning.
Kuon et al. [7] adopted a similar strategy, generating RTL
for repeatable tiles that are laid out with their specially-
designed layout tools. Detailed planning and specialized tools
are required in these works, resulting in limited portability.

While classic FPGAs mostly use bidirectional routing
tracks, pass-transistors, and tri-state buffers, modern FPGAs
converge to unidirectional tracks and buffered switches, re-
sembling standard ASIC designs. Following this trend, recent
studies proposed to adopt the standard ASIC design method-
ology and use standard-cell libraries. Liu et al. [15] presented
an open-source FPGA generator that produces synthesizable
RTL for a customizable FPGA architecture. Each block is laid
out individually, replicated, and assembled at the top level.
No information was provided about how timing character-
istics are extracted. Kim et al. [6] disclosed more details
in their approach to building a fully-synthesizable FPGA
with a similar bottom-up methodology. To deal with cycles
within and between blocks, they generate SDC constraints to
disable timing paths that are used less frequently. Prashanth et
al. [9] proposed another systematic approach to disabling
timing paths in a flat full-chip layout flow. These approaches
cut many fewer connections than random, yet still leave
a large portion of switches un-constrained. Tang et al. [8]
augmented the standard-cell libraries with a few custom cells
and reported great improvements on PPA. No constraints
are applied during layout, yet they expect better Quality of
Results (QoR) if constraints are applied properly.

𝜯s

𝜯w
𝜯n

𝜯e

𝜯n

𝜯e𝜯w
𝜯s

𝜯n

𝜯e𝜯w
𝜯s

𝜯s

𝜯w
𝜯n

𝜯e

𝜯w 𝜯e
𝜯s

𝜯n

𝜯e
𝜯n

𝜯s

𝜯w

𝜯s

𝜯w
𝜯n

𝜯e

𝜯n

𝜯e𝜯w
𝜯s

𝜯n

𝜯e𝜯w
𝜯s

𝜯s

𝜯w
𝜯n

𝜯e

𝜯w 𝜯e
𝜯s

𝜯n

𝜯e
𝜯n

𝜯s

𝜯w

(a) A Wilton switch block for uni-directional tracks. The left sub-
figure shows the connections from horizontal tracks to vertical
tracks, and the right sub-figure shows the opposite. Straight connec-
tions are omitted. Long arrows represent L2 tracks that pass through
the block.

𝜯s

L
1
[
0
]

L
1
[
1
]

L
1
[
2
]

L
2
[
0
]
.
0

L
2
[
0
]
.
1

𝜯w
L1[0]
L1[1]
L1[2]
L2[0].1
L2[0].0

L
2
[
0
]
.
1

L
2
[
0
]
.
0

L
1
[
2
]

L
1
[
1
]

L
1
[
0
]

𝜯n
𝜯e

L2[0].0
L2[0].1
L1[2]
L1[1]
L1[0]

L
2
[
0
]
.
1

L
2
[
0
]
.
0

L
1
[
2
]

L
1
[
1
]

L
1
[
0
]𝜯n

𝜯e
L2[0].0
L2[0].1
L1[2]
L1[1]
L1[0]

𝜯w
L1[0]
L1[1]
L1[2]

L2[0].1
L2[0].0

𝜯s L
1
[
0
]

L
1
[
1
]

L
1
[
2
]

L
2
[
0
]
.
0

L
2
[
0
]
.
1

3 3 0 1 2𝜯n

𝜯e
0
0
1
2
3

𝜯w
1
0
3
2
2

𝜯s 2 1 0 3 3

𝜯s

𝜯w
𝜯n

𝜯e
1
0
3
2
2

0
0
1
2
3

3 3 0 1 2

2 1 0 3 3

𝜯w 𝜯e
𝜯s

𝜯n

2 1 0 3 3

0
0
1
2
3

1
0
3
2
2

3 3 0 1 2

𝜯e
𝜯n

𝜯s

𝜯w
1
0
3
2
2

0
0
1
2
3

3 3 0 1 2

2 1 0 3 3

𝜯s

L
1
[
0
]

L
1
[
1
]

L
1
[
2
]

L
2
[
0
]
.
0

L
2
[
0
]
.
1

𝜯w
L1[0]
L1[1]
L1[2]
L2[0].1
L2[0].0

L
2
[
0
]
.
1

L
2
[
0
]
.
0

L
1
[
2
]

L
1
[
1
]

L
1
[
0
]

𝜯n
𝜯e

L2[0].0
L2[0].1
L1[2]
L1[1]
L1[0]

L
2
[
0
]
.
1

L
2
[
0
]
.
0

L
1
[
2
]

L
1
[
1
]

L
1
[
0
]𝜯n

𝜯e
L2[0].0
L2[0].1
L1[2]
L1[1]
L1[0]

𝜯w
L1[0]
L1[1]
L1[2]

L2[0].1
L2[0].0

𝜯s L
1
[
0
]

L
1
[
1
]

L
1
[
2
]

L
2
[
0
]
.
0

L
2
[
0
]
.
1

3 3 0 1 2𝜯n

𝜯e
0
0
1
2
3

𝜯w
1
0
3
2
2

𝜯s 2 1 0 3 3

𝜯s

𝜯w
𝜯n

𝜯e
1
0
3
2
2

0
0
1
2
3

3 3 0 1 2

2 1 0 3 3

𝜯w 𝜯e
𝜯s

𝜯n

2 1 0 3 3

0
0
1
2
3

1
0
3
2
2

3 3 0 1 2

𝜯e
𝜯n

𝜯s

𝜯w
1
0
3
2
2

0
0
1
2
3

3 3 0 1 2

2 1 0 3 3

(b) Logical ranking of a Wilton switch block. Cycle-breaking
connections are highlighted with red solid lines.

𝜯e
𝜯n

𝜯s

𝜯w

𝜯s

L
1
[
0
]

L
1
[
1
]

L
1
[
2
]

L
2
[
0
]
.
0

L
2
[
0
]
.
1

𝜯w
L1[0]
L1[1]
L1[2]
L2[0].1
L2[0].0

L
2
[
0
]
.
1

L
2
[
0
]
.
0

L
1
[
2
]

L
1
[
1
]

L
1
[
0
]

𝜯n
𝜯e

L2[0].0
L2[0].1
L1[2]
L1[1]
L1[0]

L
2
[
0
]
.
1

L
2
[
0
]
.
0

L
1
[
2
]

L
1
[
1
]

L
1
[
0
]𝜯n

𝜯e
L2[0].0
L2[0].1
L1[2]
L1[1]
L1[0]

𝜯w
L1[0]
L1[1]
L1[2]

L2[0].1
L2[0].0

𝜯s L
1
[
0
]

L
1
[
1
]

L
1
[
2
]

L
2
[
0
]
.
0

L
2
[
0
]
.
1

3 3 0 1 2𝜯n

𝜯e
0
0
1
2
3

𝜯w
1
0
3
2
2

𝜯s 2 1 0 3 3

𝜯s

𝜯w
𝜯n

𝜯e
1
0
3
2
2

0
0
1
2
3

3 3 0 1 2

2 1 0 3 3

𝜯w 𝜯e
𝜯s

𝜯n

2 1 0 3 3

0
0
1
2
3

1
0
3
2
2

3 3 0 1 2

1
0
3
2
2

0
0
1
2
3

3 3 0 1 2

2 1 0 3 3

𝜯s

L
1
[
0
]

L
1
[
1
]

L
1
[
2
]

L
2
[
0
]
.
0

L
2
[
0
]
.
1

𝜯w
L1[0]
L1[1]
L1[2]
L2[0].1
L2[0].0

L
2
[
0
]
.
1

L
2
[
0
]
.
0

L
1
[
2
]

L
1
[
1
]

L
1
[
0
]

𝜯n
𝜯e

L2[0].0
L2[0].1
L1[2]
L1[1]
L1[0]

L
2
[
0
]
.
1

L
2
[
0
]
.
0

L
1
[
2
]

L
1
[
1
]

L
1
[
0
]𝜯n

𝜯e
L2[0].0
L2[0].1
L1[2]
L1[1]
L1[0]

𝜯w
L1[0]
L1[1]
L1[2]

L2[0].1
L2[0].0

𝜯s L
1
[
0
]

L
1
[
1
]

L
1
[
2
]

L
2
[
0
]
.
0

L
2
[
0
]
.
1

3 3 0 1 2𝜯n

𝜯e
0
0
1
2
3

𝜯w
1
0
3
2
2

𝜯s 2 1 0 3 3

𝜯s

𝜯w
𝜯n

𝜯e
1
0
3
2
2

0
0
1
2
3

3 3 0 1 2

2 1 0 3 3

𝜯w 𝜯e
𝜯s

𝜯n

2 1 0 3 3

0
0
1
2
3

1
0
3
2
2

3 3 0 1 2

𝜯e
𝜯n

𝜯s

𝜯w
1
0
3
2
2

0
0
1
2
3

3 3 0 1 2

2 1 0 3 3

(c) Logical ranking of a cycle-free variation of the Wilton switch
block. Rearranged connections are highlighted with black solid lines;
removed connections are highlighted with red dashed lines.

Fig. 4: Logical ranking of a Wilton switch block and its cycle-
free variation

III. CYCLE-FREE ROUTING GRAPH

A. Background

In FPGAs composed of uni-directional routing tracks, three
types of cycles may exist at design time:

(i) Cycles inside CLBs. For example, a LUT output may be
connected back to its inputs through the local crossbar
when registers are bypassed.

(ii) Cycles consisting of routing tracks and programmable
switches only, as shown in Fig. 3.

(iii) Cycles consisting of routing tracks and combinational
paths through CLBs.

Type (i) cycles can be eliminated by tweaking the CLB
structure or disabling the paths that bypass the registers. We
will cover type (iii) cycles in the next section when we
discuss layout methodologies. In this section, we propose
an algorithm to analyze FPGA routing graphs and identify
key connections that cause type (ii) cycles. Since CLBs
and connection blocks do not contribute to the formation of
type (ii) cycles, our analysis focuses on the switch blocks.
Moreover, because of the regularity in FPGA architectures,
inspecting the connection patterns of repeated switch blocks
is sufficient to analyze the millions of tracks and switches
across an entire FPGA.

B. Conventional Switch Blocks

Fig. 4a shows the connection pattern of the Wilton switch
blocks [11] used in Fig. 3. Routing tracks are grouped into 4

Listing 1: Logical Ranking Algorithm
INIT :

f o r t r a c k s e t in [Tn , Te , Ts , Tw] :
f o r t r a c k in t r a c k s e t :

r ank [t r a c k] = None
i n i t t r a c k = Te [0]
i n i t r a n k = 0
q = Queue ()
q . enque (Tuple (i n i t t r a c k , i n i t r a n k))

BFS :
whi le q i s not empty :

t r a c k i , r a n k i = q . deque ()
f o r t r a c k o in Fsb (t r a c k i) :

i f r ank [t r a c k o] i s None :
rank o = r a n k i
i f ((t r a c k i∈ Tn and t r a c k o∈ Te) or

(t r a c k i∈ Tw and t r a c k o∈ Ts)) :
r ank o = rank o + 1

rank [t r a c k o] = rank o
q . enque (Tuple (t r a c k o , rank o))

sets based on their directions, namely the northbound set Tn,
eastbound set Te, southbound set Ts and westbound set Tw.
Each track in a set is uniquely identified as L[i].s, in which L
represents the length of the track; i indexes tracks of the same
length; and s differentiates the sections of a long (L > 1)
track. The connection pattern can be expressed as a multi-
mapping function between the sets: Fsb = Tn∪Te∪Ts∪Tw →
Tn ∪ Te ∪ Ts ∪ Tw. The switch block does not contain any
cycles within itself, yet multiple block instances connected
together form numerous cycles across the entire FPGA.

C. Cycle Analysis Based on Logical Ranking

In on-chip network designs, assigning priorities to different
channels and forbidding any traffic from depending on lower-
priority traffic are a common approach to eliminating cyclic
dependencies. Inspired by this approach, we propose to rank
the FPGA routing tracks logically. All connections that satisfy
any of the following criteria cause cycles. These connections
are referred to as cycle-breaking connections hereinafter.

1) The output track is ranked lower than the input track
2) The output track is ranked the same as the input track,

and the connection is a north-east or west-south turn (or
another pair of turns that respect the turn model [12])

A cycle-free sub-graph can be derived by removing all
cycle-breaking connections from all switch blocks. To prove
this conclusion, we first study how cycles are formed: A
cycle is a route, i.e., a sequence of tracks connected one after
another, in which the last track is connected to the first track.
Removing all connections satisfying criterion 1 guarantees
that the logical rank either increases monotonically or remains
the same along any route. In the former case, the last track
cannot be connected to the first track since it is ranked higher.
In the latter case, note that according to the turn model,
a route must take at least one of the two turns specified
in criterion 2 to return to its starting position. Therefore,
removing all connections satisfying criterion 2 guarantees that
a route cannot return to its starting position if all of its tracks
are ranked the same, thus impossible to form a cycle.

Different sets of cycle-breaking connections are identified
with different logical rankings. Listing 1 shows an example
algorithm for finding a logical ranking that minimizes the
number of cycle-breaking connections based on Breadth-First
Search (BFS). Fig. 4b shows the logical ranking assigned to
the Wilton switch block used in Fig. 3 and the cycle-breaking
connections identified with this ranking.

D. Cycle-Free Switch Block

Switch blocks with no cycle-breaking connections are
Cycle-Free Switch Blocks. Existing switch blocks can be
modified into cycle-free switch blocks by removing or re-
arranging the cycle-breaking connections. Fig. 4c shows the
cycle-free variation of the Wilton switch block. Novel cycle-
free switch blocks can also be designed from scratch by
assigning the logical ranking first and avoiding cycle-breaking
connections when creating the connection pattern.

IV. DESIGN METHODOLOGY

A. Chip-Level STA of Conventional FPGAs

Due to the cycles mentioned above, prior works are limited
to a bottom-up design methodology. Each block is laid out
individually, converted to a black-box macro, then replicated
and stitched together at chip level. Our proposed algorithm
can be applied to guide the post-layout STA in this flow:

1) Run block-level STA on the logic blocks including CLBs
and other IP blocks such as BRAM and DSP blocks.
Timing characteristics of these blocks are saved for the
packer in the FPGA implementation toolchain.

2) Create abstract timing models for the logic blocks.
Remove combinational timing arcs from the models.
Sequential startpoints/endpoints are preserved.

3) Run block-level STA on the routing blocks.
4) Create abstract timing models for the routing blocks.
5) Disable timing arcs that correspond to cycle-breaking

connections identified by a logical ranking. Run chip-
level STA and measure the propagation delay of the
remaining connections. These numbers are saved for the
router in the FPGA implementation toolchain.

6) Repeat Step. 5 with a different logical ranking until all
connections are analyzed.

Note that type (iii) cycles defined in Sec. III-A are elimi-
nated in this STA because combinational paths through CLBs
are analyzed in Step. 1 and removed in the following steps.

B. Flat Multi-Block Design Flow for Cycle-Free FPGAs

Our proposed approach enables the design of Cycle-Free
FPGAs, that is, FPGAs in which all switch blocks are cycle-
free. Multi-block sub-arrays of such an FPGA (if not the full
chip, considering EDA runtime) may be placed and routed
flat, which often leads to better QoR and reduces human labor
involved in floorplanning and constraining the blocks. The
following summarizes this design methodology:

1) Lay out the logic blocks individually. Create abstract
timing models without combinational timing arcs.

2) Divide the FPGA into multi-block sub-arrays, e.g. 4×4
CLBs and the routing blocks around them. Lay out
the sub-arrays using the abstract timing models for the
CLBs. Allow the EDA tools to ungroup the routing
blocks.

3) Assemble the sub-arrays at the chip level and run STA.

V. ROUTABILITY EVALUATION

In this section, we evaluate the impact of using cycle-free
switch blocks on the routability of FPGA routing graphs.

102

103

104

105

106

Ne
tli

st
 C

om
po

sit
io

n
(L

og
sc

al
e)

Primitives Nets

m
cm

l

st
er

eo
vi

sio
n2

bg
m

LU
8P

EE
ng

st
er

eo
vi

sio
n0

st
er

eo
vi

sio
n1

ar
m

_c
or

e

bl
ob

_m
er

ge

or
12

00

m
kD

el
ay

W
or

ke
r3

2B sh
a

ra
yg

en
to

p

m
kS

M
Ad

ap
te

r4
B

sp
re

e

m
kP

kt
M

er
ge

di
ffe

q1

bo
un

dt
op

di
ffe

q2

100

102

104

Bl
oc

k
Ut

il.
(L

og
sc

al
e)

CLB IOB DSP MEM

Fig. 5: Benchmark Statistics for the VTR [13] benchmark
suite. The figure on the top shows the number of primitives
(LUTs and flipflops) and nets used by each benchmark after
synthesis. The figure on the bottom shows the utilization of
blocks per benchmark after packing.

Parameter Value Note
N 8 #LUTs per logic block
K 6 LUT size. Support dual-LUT5/arithmetic modes
L 1, 4 Track lengths. Each type takes 50% channel width
Fs 3 Switch block connectivity
Fc,in 0.4 Connection block input connectivity
Fc,out 0.2 Connection block output connectivity
Hard Logic - DSP (Fracturable Multiplier) and BRAM

TABLE I: VTR architecture parameters

A. Benchmarks

We use the benchmarks shipped with the Verilog-to-
Routing (VTR) [13] project for our evaluation. Fig. 5 shows
the statistics of the VTR benchmarks, including the number
of primitives and nets used by each design, as well as the
utilization of different blocks. This benchmark suite covers
designs of various scale, connectivity, and resource require-
ments, so we believe the results presented in this section are
representative of a wide range of applications.

B. Methodology

We first use the Princeton Reconfigurable Gate Array [16]
(PRGA) framework to generate a scalable architecture speci-
fication with the parameters shown in Table I. We run the
VTR flow with the generated specification to implement
each benchmark individually and determine the minimally
sufficient FPGA size and routing channel width. We then
relax the channel width by 30% and use the PRGA framework
to generate routing resource graph specifications for three
types of switch blocks (SB): 1) universal SB [17] (baseline),
2) vanilla Wilton SB [11], 3) cycle-free Wilton SB (this
work). We rerun the routing step of the VTR flow with
these specifications, reusing the same packing and placement
results to eliminate other factors affecting the routing quality.
We then compare the critical path delay.

C. Evaluation Results

Fig. 6 shows the evaluation results. Compared to the
universal switch block, the vanilla Wilton switch block and
its cycle-free variation reduce the critical path delay by 9.3%
and 10.0% (geometric mean), respectively. Moreover, among
the 7 large benchmarks that require more than 10K primitives
and nets, the cycle-free Wilton switch block achieves better
critical path delay in 5 benchmarks. In summary, the Wilton
switch block’s cycle-free variation has no negative impact on
the routability of the routing graph.

0

50

100

FP
GA

 S
ize

 &
 R

el
ax

ed
 C

ha
nn

el
 W

id
th

FPGA Size (Width=Height) Relaxed Channel Width

m
cm

l

st
er

eo
vi

sio
n2

bg
m

LU
8P

EE
ng

st
er

eo
vi

sio
n0

st
er

eo
vi

sio
n1

ar
m

_c
or

e

bl
ob

_m
er

ge

or
12

00

m
kD

el
ay

W
or

ke
r3

2B sh
a

ra
yg

en
to

p

m
kS

M
Ad

ap
te

r4
B

sp
re

e

m
kP

kt
M

er
ge

di
ffe

q1

bo
un

dt
op

di
ffe

q2

Ge
o.

 M
ea

n

0.0%

10.0%

20.0%

30.0%

40.0%

Cr
it.

 P
at

h
De

la
y

Re
du

ct
io

n
vs

. U
ni

ve
rs

al
 S

B

9.3% 10.0%

Vanilla Wilton SB Cycle-Free Wilton SB

Fig. 6: Routing Results. The figure on the top shows the
width, height, and channel width of the FPGA used to route
each benchmark. The figure on the bottom shows the critical
path delay reduction of the vanilla and cycle-free Wilton
switch box compared to the universal switch box.

CLB

SB

CB
CB

(a) A 4x4 sub-array of a conventional
FPGA designed with the bottom-up
design flow proposed by prior works

CLB

(b) A 4x4 sub-array of a
cycle-free FPGA designed
with the flat design flow

Fig. 7: Layout Photos

VI. DESIGN FLOW EVALUATION

In this section, we evaluate the bottom-up design flow
proposed by prior works and our proposed flat design flow
enabled by cycle-free FPGAs.

A. Methodology

We first use the PRGA [16] framework to generate syn-
thesizable RTL for two 4x4 sub-arrays from two FPGAs: a)
a conventional FPGA equipped with vanilla Wilton switch
blocks, b) a cycle-free FPGA equipped with cycle-free Wilton
switch blocks. Other architectural parameters of the FPGAs
are shown in Table. I, and the channel width is 200 (36 L1
tracks and 16 L4 tracks in each direction). Design (a) is laid
out with the bottom-up design flow proposed by prior works,
as summarized in Sec. IV-A, and design (b) is laid out with
the flat design flow proposed in Sec. IV-B. Note that the CLB
structure is the same for the two FPGAs, and both flows need
the layout and abstract timing model of the CLB, therefore
we only lay out the CLB once and use it in both designs.
Fig. 7 shows the layout photos of the two sub-arrays.

B. Design Effort

One important saving of the flat design flow is the human
labor. To improve the QoR of the conventional FPGA, we
have to try different shapes and relative positions of the
blocks. In each iteration, we manually place the pins of each
block and align them at the top level in order to reduce

0.0 0.2 0.4 0.6 0.8 1.0
Switch Delay (Normalized)

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

Sw
itc

h
De

la
y

Di
st

rib
ut

io
n Cycle-Free: CB Switches

Cycle-Free: SB Switches
Vanilla Wilton: CB Switches
Vanilla Wilton: SB Switches

0.3880.153 0.2990.176

Fig. 8: Programmable switch delay distribution. Delay values
are normalized to maximum delay. Average delays are marked
with vertical dashed line. CB (connection block) switches
connect block pins and routing tracks. SB (switch block)
switches connect one track to another.

congestion. In comparison, the design flow is fully automated
for the cycle-free FPGA except for CLB placement.

C. Area

The core utilization rate is set to 0.6 for all the blocks
and the cycle-free sub-array. The post-layout area of design
(b) (cycle-free) is 43.8% less than that of design (a) (con-
ventional). However, design (a) can be smaller if the blocks
are floorplanned in non-rectangular shapes, carefully abutted,
and routed at the top level (which is difficult for advanced
technology nodes due to the complex design rules). In the
extreme case, if we remove all the routing/buffering space
added at the top level, we can reduce the total area of design
(a) by 37.2%. Even so, design (b) is still 10.5% smaller.

D. Performance

The key difference in performance is the propagation
delay across the programmable switches. Fig. 8 shows the
distribution of the switch delays in the two designs. On
average, the SB switch delay of design (b) (cycle-free) is
13.1% lower than design (a), but the CB switch delay is
29.8% higher. As elaborated in Sec. IV-B, we intentionally
remove all combinational paths through CLBs to eliminate
type (iii) cycles defined in Sec. III-A. As a consequence, any
timing path optimized by EDA tools may include many SB
switches, but cannot include more than two CB switches: 1)
A CLB output switch if the timing path starts from a register
output in a CLB; 2) A CLB input switch if the timing path
ends at a register input in a CLB. A possible improvement is
to wrap the CLB and all the connection blocks around it into
one physical block, then optimize the CB switches within the
physical block. This possibility is left for future work.

VII. CONCLUSIONS

In this paper, we proposed a generic approach to construct
cycle-free FPGA routing graphs. The proposed approach
enables automated, accurate, per-switch, post-layout STA for
conventional FPGAs. Moreover, it opens up the possibility
of designing intrinsically cycle-free FPGAs that facilitate a
flat multi-block or full-chip design flow. We quantitatively
showed that using cycle-free switch blocks has no nega-
tive impact on the routability of the FPGA routing graphs.
Furthermore, we compared the area and performance of a
conventional FPGA built with the design flow proposed by
prior works and a cycle-free FPGA built with our proposed
flat multi-block design flow. Experiments show that our
proposed flat design flow may save 10.5-43.8% area, 13.1%
switch delay in switch blocks, but increase the switch delay
in connection blocks by 29.8%.

REFERENCES

[1] S. M. S. Trimberger, “Three Ages of FPGAs: A Retrospective on the
First Thirty Years of FPGA Technology,” IEEE Solid-State Circuits
Magazine, vol. 10, no. 2, pp. 16–29, 2018.

[2] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007.

[3] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-Chip
Heterogeneous Computing: Does the Future Include Custom Logic,
FPGAs, and GPGPUs?” Proceedings of the Annual International
Symposium on Microarchitecture, MICRO, pp. 225–236, 2010.

[4] M. Abramovici, C. Stroud, and M. Emmert, “Using Embedded FPGAs
for SoC Yield Improvement,” in Proceedings of the 39th Annual
Design Automation Conference, ser. DAC ’02. New York, NY, USA:
Association for Computing Machinery, 2002, p. 713–724.

[5] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going Deeper with Embedded FPGA
Platform for Convolutional Neural Network,” pp. 26–35.

[6] Jin Hee Kim and J. H. Anderson, “Synthesizable FPGA Fabrics
Targetable by the Verilog-to-Routing (VTR) CAD Flow,” in 2015
25th International Conference on Field Programmable Logic and
Applications (FPL), Sep. 2015, pp. 1–8.

[7] I. Kuon, A. Egier, and J. Rose, “Design, Layout and Verification
of an FPGA Using Automated Tools,” in Proceedings of the 2005
ACM/SIGDA 13th International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’05. New York, NY, USA: Association for
Computing Machinery, 2005, p. 215–226.

[8] X. Tang, E. Giacomin, G. D. Micheli, and P. Gaillardon, “FPGA-
SPICE: A Simulation-Based Architecture Evaluation Framework for
FPGAs,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 3, pp. 637–650, March 2019.

[9] P. Mohan, O. Atli, O. O. Kibar, and K. Mai, “A Top-Down Design
Methodology for Synthesizing FPGA Fabrics Using Standard ASIC
Flow,” in The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 313.

[10] V. Aken Ova and R. Saleh, “A “Soft++” EFPGA Physical Design
Approach with Case Studies in 180nm and 90nm,” in Proceedings
of the IEEE Computer Society Annual Symposium on Emerging VLSI
Technologies and Architectures, ser. ISVLSI ’06. USA: IEEE Com-
puter Society, 2006, p. 103.

[11] S. J. E. Wilton, “Architectures and Algorithms for Field-Programmable
Gate Arrays with Embedded Memory,” Ph.D. dissertation, Toronto,
Ont., Canada, Canada, 1997, aAINQ28082.

[12] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive Routing,”
in [1992] Proceedings the 19th Annual International Symposium on
Computer Architecture, May 1992, pp. 278–287.

[13] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
pp. 6:1–6:30, Jul. 2014.

[14] B. Neumann, T. von Sydow, H. Blume, and T. G. Noll, “Design Flow
for Embedded FPGAs Based on a Flexible Architecture Template,”
in Proceedings of the Conference on Design, Automation and Test
in Europe, ser. DATE ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 56–61.

[15] H. J. Liu, “Archipelago - An Open Source FPGA with Toolflow
Support,” Master’s thesis, EECS Department, University of California,
Berkeley, May 2014.

[16] A. Li and D. Wentzlaff, “PRGA: An Open-Source Framework for
Building and Using Custom FPGAs,” in The First Workshop on Open-
Source Design Automation; Florence, Italy, 2019, pp. 1–6.

[17] Y.-w. Chang and D. F. Wong, “Universal Switch Modules for FPGA
Design Chinese University of Hong Kong,” vol. 1, no. 1, pp. 80–101,
1996.

